Definitions

All definitions are described in detail in G. P. Müller et al., Phys. Rev. B 99, 224414 (2019). Here we make brief summaries to give you an overview.

Heisenberg Hamiltonian

The Hamiltonian is defined as

https://math.now.sh?from=%5Cmathcal%7BH%7D%20%3D%0A%20%20%20%20-%20%5Csum_i%20%5Cmu_i%20%5Cvec%7BB%7D%5Ccdot%5Cvec%7Bn%7D_i%0A%20%20%20%20-%20%5Csum_i%20%5Csum_j%20K_j%20%28%5Chat%7BK%7D_j%5Ccdot%5Cvec%7Bn%7D_i%29%5E2%0A%20%20%20%20-%20%5Csum%5Climits_%7B%5Cbraket%7B%5C%3B%20ij%7D%7D%5C%2C%20J_%7Bij%7D%20%5Cvec%7Bn%7D_i%5Ccdot%5Cvec%7Bn%7D_j%0A%20%20%20%20-%20%5Csum%5Climits_%7B%5Cbraket%7B%5C%3Bij%7D%7D%5C%2C%20%5Cvec%7BD%7D_%7Bij%7D%20%5Ccdot%20(%5Cvec%7Bn%7D_i%5Ctimes%5Cvec%7Bn%7D_j)%0A%20%20%20%20%2B%20%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7B%5Cmu_0%7D%7B4%5Cpi%7D%20%5Csum_%7B%5Csubstack%7Bi%2Cj%20%5C%5C%20i%20%5Cneq%20j%7D%7D%20%5Cmu_i%20%5Cmu_j%20%5Cfrac%7B(%5Cvec%7Bn%7D_i%20%5Ccdot%20%5Chat%7Br%7D_%7Bij%7D)%20(%5Cvec%7Bn%7D_j%5Ccdot%5Chat%7Br%7D_%7Bij%7D)%20-%20%5Cvec%7Bn%7D_i%20%5Cvec%7Bn%7D_j%7D%7B%7Br_%7Bij%7D%7D%5E3%7D

where it is important to note that <ij> denotes the unique pairs of interacting spins i and j.

The quadruplet interaction is defined as

https://math.now.sh?from=E_%5Cmathrm%7BQuad%7D%20%3D%20-%20%5Csum%5Climits_%7Bijkl%7D%5C%2C%20K_%7Bijkl%7D%20%5Cleft%28%5Cvec%7Bn%7D_i%5Ccdot%5Cvec%7Bn%7D_j%5Cright%29%5Cleft(%5Cvec%7Bn%7D_k%5Ccdot%5Cvec%7Bn%7D_l%5Cright)

LLG dynamics

Spirit denotes the LLG equation as

https://math.now.sh?from=%5Cbegin%7Balignedat%7D%7B2%7D%0A%20%20%20%20%5Cdfrac%7B%5Cpartial%20%5Cvec%7Bn%7D_i%7D%7B%5Cpartial%20t%7D%0A%20%20%20%20%20%20%20%20%3D%26%20-%20%5Cdfrac%7B%5Cgamma%7D%7B%281%2B%5Calpha%5E2%29%5Cmu_i%7D%20%5Cvec%7Bn%7D_i%20%5Ctimes%20%5Cvec%7BB%7D%5E%5Cmathrm%7Beff%7D_i%20%0A%20%20%20%20%20%20%20%20-%20%5Cdfrac%7B%5Cgamma%20%5Calpha%7D%7B(1%2B%5Calpha%5E2)%5Cmu_i%7D%20%5Cvec%7Bn%7D_i%20%5Ctimes%20(%5Cvec%7Bn%7D_i%20%5Ctimes%20%5Cvec%7BB%7D%5E%5Cmathrm%7Beff%7D_i)%20%5C%5C%0A%20%20%20%20%20%20%20%20%26-%20%5Cdfrac%7B%5Calpha-%5Cbeta%7D%7B(1%2B%5Calpha%5E2)%7D%20u%20%5Cvec%7Bn%7D_i%20%5Ctimes%20(%5Chat%7Bj%7D_e%20%5Ccdot%20%5Cnabla_%7B%5Cvec%7Br%7D%7D%20)%5Cvec%7Bn%7D_i%0A%20%20%20%20%20%20%20%20%2B%20%5Cdfrac%7B1%2B%5Cbeta%20%5Calpha%7D%7B(1%2B%5Calpha%5E2)%7D%20u%20%5Cvec%7Bn%7D_i%20%5Ctimes%20(%5Chat%7Bn%7D_i%20%5Ctimes%20(%5Chat%7Bj%7D_e%20%5Ccdot%20%5Cnabla_%7B%5Cvec%7Br%7D%7D%20)%5Cvec%7Bn%7D_i)%0A%5Cend%7Balignedat%7D

γ is the electron gyromagnetic ratio, α is the damping parameter, β is a non-adiabaticity parameter, with

https://math.now.sh?from=u%3Dj_e%20P%20g%20%5Cmu_%5Cmathrm%7BB%7D%2F%282eM_%5Cmathrm%7BS%7D%29 and https://math.now.sh?from=%5Cnabla_%7B%5Cvec%7Br%7D%7D%20%3D%20%5Cpartial%20%2F%20%5Cpartial%20%5Cvec%7Br%7D

If temperature is used, a thermal component is added to the effective magnetic field:

https://math.now.sh?from=%5Cvec%7BB%7D%5E%5Cmathrm%7Bth%7D_i%28t%29%20%3D%20%5Csqrt%7B2D_i%7D%20%5Cvec%7B%5Ceta%7D_i(t)%20%3D%20%5Csqrt%7B2%5Calpha%20k_%5Cmathrm%7BB%7DT%20%5Cfrac%7B%5Cmu_i%7D%7B%5Cgamma%7D%7D%20%5Cvec%7B%5Ceta%7D_i(t)

Geodesic nudged elastic band method

The total force is

https://math.now.sh?from=F%5E%5Cmathrm%7Btot%7D_%5Cnu%20%3D%20F%5E%5Cmathrm%7BS%7D_%5Cnu%20%2B%20F%5E%5Cmathrm%7BE%7D_%5Cnu

with the spring force

https://math.now.sh?from=F%5E%5Cmathrm%7BS%7D_%5Cnu%20%3D%20%28l_%7B%5Cnu-1%2C%5Cnu%7D-l_%7B%5Cnu%2C%5Cnu%2B1%7D%29%5C%20%5Ctau_%5Cnu

and the energy gradient force

https://math.now.sh?from=F%5E%5Cmathrm%7BE%7D_%5Cnu%20%3D%20-%5Cnabla%20E_%5Cnu%20%2B%20%28%5Cnabla%20E_%5Cnu%20%5Ccdot%20%5Ctau_%5Cnu%29%5Ctau_%5Cnu

The corresponding 3-component subvectors need to be orthogonalized with respect to the spins:

https://math.now.sh?from=%5Cvec%7B%5Ctau%7D_%7B%5Cnu%2Ci%7D%20%5Cto%20%5Cvec%7B%5Ctau%7D_%7B%5Cnu%2Ci%7D%20-%20%28%5Cvec%7B%5Ctau%7D_%7B%5Cnu%2Ci%7D%5Ccdot%20%5Cvec%7Bn%7D_%7B%5Cnu%2Ci%7D%29%5Cvec%7Bn%7D_%7B%5Cnu%2Ci%7D

The spring forces need to be projected as well

https://math.now.sh?from=%5Cvec%7BF%7D%5E%5Cmathrm%7BE%7D_%7B%5Cnu%2Ci%7D%20%5Cto%20%5Cvec%7BF%7D%5E%5Cmathrm%7BE%7D_%7B%5Cnu%2Ci%7D%20%20-%20%28%5Cvec%7BF%7D%5E%5Cmathrm%7BE%7D_%7B%5Cnu%2Ci%7D%20%5Ccdot%20%5Cvec%7Bn%7D_%7B%5Cnu%2Ci%7D%29%20%5Cvec%7Bn%7D_%7B%5Cnu%2Ci%7D

Note the features of “climbing/falling images” and “path shortening”, which are described in detail in the paper.

Minimum mode following method

The mode following force is given by an inversion of the energy gradient force along the mode λ:

https://math.now.sh?from=F%5E%5Cmathrm%7Beff%7D%20%3D%20F%20-%202%20%28F%5Ccdot%7B%5Chat%5Clambda%7D%29%20%7B%5Chat%5Clambda%7D

To calculate the energy eigenmodes, we calculate the Hessian matrix

https://math.now.sh?from=H_%7Bij%7D%20%3D%20T_i%5ET%20%5Cbar%7BH%7D_%7Bij%7D%20T_j%20-%20T_i%5ET%20I%20%28%5Cvec%7Bn%7D_j%5Ccdot%5Cvec%7B%5Cnabla%7D_j%5Cbar%7B%5Cmathcal%7BH%7D%7D%29%20T_j

Details on this method, the equations and their derivations can be found in G. P. Müller et al., Phys. Rev. Lett. 121, 197202 and [1].

Harmonic transition state theory

The transition rate reads

https://math.now.sh?from=%5CGamma%5E%5Cmathrm%7BHTST%7D%20%3D%20%5Cfrac%7Bv%7D%7B2%5Cpi%7D%20%5COmega_0%20e%5E%7B-%5CDelta%20E%2Fk_%5Cmathrm%7BB%7DT%7D

with

https://math.now.sh?from=%5COmega_0%0A%20%20%20%20%3D%20%5Csqrt%7B%5Cfrac%7B%5Cdet%5E%5Cprime%20H%5E%5Cmathrm%7BM%7D%7D%7B%5Cdet%5E%5Cprime%20H%5E%5Cmathrm%7BS%7D%7D%7D%0A%20%20%20%20%3D%20%5Csqrt%7B%5Cfrac%7B%5Csideset%7B%7D%7B%27%7D%5Cprod_i%20%5Clambda_i%5E%5Cmathrm%7BM%7D%7D%7B%5Csideset%7B%7D%7B%27%7D%5Cprod_i%20%5Clambda_i%5E%5Cmathrm%7BS%7D%7D%7D

https://math.now.sh?from=v%0A%20%20%20%20%3D%20%5Csqrt%7B%202%5Cpi%20k_%5Cmathrm%7BB%7DT%20%7D%5E%7BN_0%5E%5Cmathrm%7BM%7D%20-%20N_0%5E%5Cmathrm%7BS%7D%7D%0A%20%20%20%20%5Cfrac%7BV%5E%5Cmathrm%7BS%7D%7D%7BV%5E%5Cmathrm%7BM%7D%7D%0A%20%20%20%20%5Csqrt%7B%5Csideset%7B%7D%7B%27%7D%5Csum_i%20%5Cfrac%7Ba_i%5E2%7D%7B%5Clambda_i%5E%5Cmathrm%7BS%7D%7D%7D

Details on these equations and their derivations can be found in [1].

Topological charge

The topological charge is defined as

https://math.now.sh?from=Q%20%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%7D%20%5Cint_%7B%5Cmathbb%7BR%7D%5E2%7D%20%5Cvec%7Bn%7D%20%5Ccdot%20%28%5Cpartial_x%20%5Cvec%7Bn%7D%20%5Ctimes%20%5Cpartial_y%20%5Cvec%7Bn%7D%29%5C%2C%20%5Cmathrm%7Bd%7D%5Cvec%7Br%7D

On a discrete lattice, this corresponds to

https://math.now.sh?from=Q%3D%20%5Cfrac%7B1%7D%7B4%5Cpi%7D%5Csum_l%20A_l

with

https://math.now.sh?from=%5Ccos%5Cleft%28%5Cfrac%7BA_l%7D%7B2%7D%5Cright%29%3D%5Cfrac%7B1%20%20%2B%20%5Cvec%7Bn%7D_i%20%5Ccdot%20%5Cvec%7Bn%7D_j%20%2B%20%5Cvec%7Bn%7D_i%20%5Ccdot%20%5Cvec%7Bn%7D_k%20%2B%20%5Cvec%7Bn%7D_j%20%5Ccdot%20%5Cvec%7Bn%7D_k%7D%0A%20%20%20%20%7B%5Csqrt%7B2%5Cleft(1%2B%5Cvec%7Bn%7D_i%5Cvec%7Bn%7D_j%5Cright)%5Cleft(1%2B%5Cvec%7Bn%7D_j%5Cvec%7Bn%7D_k%0A%20%20%20%20%5Cright)%5Cleft(1%2B%5Cvec%7Bn%7D_k%5Cvec%7Bn%7D_i%5Cright)%7D%7D

Gaussian (test-) Hamiltonian

The Hamiltonian is defined as

https://math.now.sh?from=%5Cmathcal%7BH%7D%20%3D%20%5Csum%5Climits_i%20%5Cmathcal%7BH%7D_i%20%20%3D%20%5Csum%5Climits_i%20a_i%20%5Cexp%5Cleft%28%20-%5Cfrac%7B(1%20-%20%5Cvec%7Bn%7D%5Ccdot%5Cvec%7Bc%7D_i%29%5E2%7D%7B2%5Csigma_i%5E2%7D%20%5Cright)


[1]: G. P. Müller, Advanced methods for atomic scale spin simulations and application to localized magnetic states. PhD Thesis (2019) (availavle from Univ. of Iceland, RWTH Aachen and FZ Jülich)